January 31, 2025 AMED (Japan Agency for Medical Research and Development) Supports

International Collaboration

Implementation of wide band EEG in epilepsy care by digital EEG

> Lecture: Wide Band EEG Analysis Now ready for clinical implementation

Akio IKEDA, MD, PhD, FACNS

Department of Epilepsy, Movement Disorders & Physiology Kyoto University Graduate School of Medicine Kyoto, JAPAN

Disclo	osure Form
Company Name	Nature of Affiliation
Sumitomo Pharma CoNihon-Kohden	 Industry-Academia Collaboration Courses Collaboration study
UCB JapanEli Lilly JapanRICHO	 Collaboration study
Off-Label Product Usage	
None	

- 1) What is the wide-band EEG?
- 2) Special machine? Special technique?
- 3) Is it useful? Is it redundant? Just only research?
- 4) Useful only in invasive EEG?
- 5) Is it recorded by scalp-EEG?
- 6) EEG technologist could analyse?

A comparison to epilepsy surgery outcome				
	Retrospective study	Prospective study		
Interictal HFO	•Jacobs J et al. Ann Neurol. 2010;67:209-220 •Akiyama T et al. Epilepsia 2011;52:1802– 1811 • Van Klink NEC et al. Ann Neurol. 2017; 81: 664-676	•Jacobs J et al. Neurology. 2018;91(11):e1040-e1052. <mark>5 institutes</mark> •Zweiphenning W et al. Lancet Neurol.		
	others	2022; 21(11): 982-993 3 institutes		
	Effective	Non-effective		
Wide-band EEG (Ictal DC shifts ictal HFO)	 Nakatani M et al. Brain Commun. 2022; 4(5) : fcac222. doi: 10.1093/braincomms/fcac222 5 institutes in Japan Effective 	SDG(subdural grid) → SEEG Not yet		
	(a table made by F	Prof. T Maehara, Tokyo, Japan)		

Collab	Time freque	Jency analy	ysis on the O up to 600Hz a	EEG revie	ew statior	r (+-60sec) station)
File Analysis	Display Settings Time Freque	ency Display Waveform Displa	Wide-band EE	G analysis			- 0 ×
A01-REF1	A09-REF1	A17-REF1	BOS-REF1		COI-REF1	D03-REF1	
A02-REF1	A10-REF1	A18-REF1	BOG-REF1	B14-REF1	CO2-REF1	D04-REF1	
A03-REF1	A11-REF1	A19-BEF1	BOZ-REF1	B15-REF1	CO3-REF1	EKG1-EKG2	
A04-REF1	A12-REF1	A20-REF1	BOB-REF1	B16-REF1	CD4-REF1		c
A05-REF1		BOT-REF1	BOS-REF1	B17-REF1	COS-REF1		
A06 HEFT	Altheri	BOJ-REF1					
A08-REF1	A16-REF1	B04-REF1	B12-REF1	B20-REF1	D02-REF1		
		0 - 600 Hz -1.0	D .0.600.0 Hz 50.0 ms 2	5 s 1.2 mV 2.5 mV [16] 5 Hz 20:36:35 720 ms	5 uV]165 uV		
001-REF1 18.8	8 Hz 20:37:07 115 ms 0.1	01	0			≪ ⊯ 00	:20.32 📢

ltem	Setting Range		Initial Setting			
		Waveform 1	Waveform 2	Waveform 3	Waveform 4	
Waveform Name	Up to 64 alphanumeric characters	Conventional	Slow shift	Ripple	Fast ripple	
Low cut filter	ON/OFF	ON	OFF	ON	ON	
Cutoff frequency	_	1.6 Hz	0.3 Hz	80.0 Hz	250.0 Hz	
Туре	Forward*1/Zero phase*2	Forward	Zero phase	Zero phase	Zero phase	
Slope	—	6 dB/oct	48 dB/oct	48 dB/oct	48 dB/oct	
High cut filter	ON/OFF	ON	ON	ON	ON	
Cutoff frequency	_	60 Hz	1.0 Hz	250.0 Hz	600.0 Hz	
Туре	Forward*1/Zero phase*2	Forward	Zero phase	Zero phase	Zero phase	
Slope*3	_	12 dB/oct	48 dB/oct	48 dB/oct	48 dB/oct	
AC filter	ON/OFF	ON	OFF	ON	ON	
Waveform color	_	Gray	Red	Blue	Green	
Sens	_	75µV	150µV	10µV	10µV	

Wide-band EEG: a mysterious and very useful technique

Long introduction

1) active- vs. passive DC shifts AMED study in Japan (Multi-institutional study) Surgical outcome

- 2) 2 types of ictal DC shifts, and pathology
- 3) Is it recorded by TC 2sec EEG?
- 4) Is it recorded by scalp EEG?